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ABSTRACT. We determine the limiting distribution of the family of values L′

L (1/2 + ε, χD) as D
varies over fundamental discriminants. Here, 0 < ε < 1

2 , and χD is the real character associated
with D. Moreover, we also establish an upper bound for the rate of convergence of this family to its
limiting distribution. As a consequence of this result, we derive an asymptotic bound for the small
values of

∣∣∣L′

L (1/2 + ε, χD)
∣∣∣.

1. INTRODUCTION

Many mathematicians have studied the distribution of values of L-functions in the critical strip.
Some of the earliest results on this topic are due to Bohr-Jessen ([2], [3]) and Jessen-Wintner [15].
These authors obtain the distribution function of log ζ(σ+it) for a fixed σ > 1

2
and established sev-

eral analytic properties of this function. Another influential result on this topic is Selberg’s central
limit theorem [25] which states that values log ζ(1

2
+ it) have an approximately two-dimensional

Gaussian distribution. Distribution problems for several other families of L-functions have been
considered from various points of view over the last 70 years. Consider for example the family
of L-functions associated with real quadratic characters χD where χD(n) is the Kronecker symbol(
D
n

)
. Chowla and Erdos [4] proved that the family {L(σ, χD) : D > 0, D ≡ 0, 1 mod 4}, for a

fixed σ > 3
4
, admits a continuous and strictly increasing asymptotic distribution function. Elliott

also considered this particular family of L-values in a series of papers in the 1970’s, thereby im-
proving on the previous body of work. One of Elliott’s results in this direction is the following
theorem [7, Theorem 1].

Theorem 1.1. Let σ0 be a real number that satisfies 1
2

+ (log log logN)−
1
2 ≤ σ0 ≤ 1. There exist

distribution functions F (s, z) so that the estimate
1

π(N)
#{p ≤ N : p prime, |L(s, χp)| ≤ ez} = F (s, z) +O((log log logN)−2), as N →∞,

holds uniformly for all s in RN = {s : σ0 ≤ σ ≤ 5
4
, |=(s)| < N

1
13

(2σ−1)} and for all real numbers
z. For each value of s, the function F (s, z) is infinitely differentiable with respect to z. Moreover,
the characteristic function ϕ(s, τ) of F (s, z) has the form

ϕ(s, τ) =
∏
p prime

1

2

(
exp

(
−iτ

∣∣log(1 + p−s)
∣∣)+ exp

(
−iτ

∣∣log(1− p−s)
∣∣)) ,
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and satisfies the bound ϕ(s, τ)� exp

(
− c1|τ |

1
σ

2σ−1

)
for all σ > 1

2
.

In an important paper [8], Granville and Soundararajan studied the distribution of large values
of L(1, χD) as D varies over all fundamental discriminants. One of their results implies that
the proportion of fundamental discriminants D with |D| ≤ x such that L(1, χD) ≥ eγτ decays
doubly exponentially in τ = log log x. In [8], the authors compare the distribution of the values
of L(1, χD) with the distribution of the probabilistic model L(1, X) for some carefully chosen
random variable X .

The idea of comparing the distribution of values of L(1, χD) to a random model precedes [8]. For
instance, it appears in the work of Elliott [5, 7] where he reduced the problem to a probability
problem concerning sums of independent random variables on a finite probability space.

Lamzouri explored this line of research even further and established a framework for studying
the distribution of large values of various families of L-functions inside the critical strip (see for
example [17] and [18]). In [19], Lamzouri studied the distribution of large values of L′

L
(1, χD).

These values have great arithmetic significance as they are directly related to the values of the
Euler-Kronecker constants of the quadratic fields Q(

√
D). In fact, the distribution of values of

logarithmic derivatives of Dirichlet L-functions in the critical strip was initiated by Ihara and Mat-
sumoto (see for example [11], [12], [13] and [14]). Their approach, however, does not follow the
probabilistic framework employed in [8], [10], [17], [18] and [19] among other papers. Instead,
it is based on classical results such as Lévy’s continuity theorem and Jessen-Wintner theory of
infinite convolutions of distribution functions.

Following the method employed in [14], Mourtada and Murty proved the following result (see
[22, Theorem 2]).

Theorem 1.2. Let σ > 1
2
, and assume the GRH. Let F(N) denote the set of fundamental dis-

criminants in the interval [−N,N ]. Then, there exists a probability density function Mσ, such
that

lim
N→∞

1

|F(N)|

∣∣∣∣{D ∈ F(N);
L′

L
(σ, χD) ≤ z

}∣∣∣∣ =

ˆ z

−∞
Mσ(t)dt.

Moreover, the characteristic function ϕFσ(y) of the asymptotic distribution function Fσ(z) =´ z
−∞Mσ(t)dt is given by

ϕFσ(y) =
∏
p

(
1

p+ 1
+

p

2(p+ 1)
exp

(
−iy log p

pσ − 1

)
+

p

2(p+ 1)
exp

(
iy log p

pσ + 1

))
.

The purpose of this paper is to revisit this problem and strengthen Theorem 1.2 by removing the
dependence on the GRH and providing an explicit error term. To this end, we follow the approach
of Lamzouri [19] and employ some ideas from Lamzouri, Lester, and Radziwiłł [21] to compare the
distribution of L′

L
(σ, χD) to that of a probabilistic random model constructed using the independent

random variables introduced in [8] (see (2) below).

Following the typographical convention in [16], we will use sans-serif fonts, such as X, to denote
arithmetic random variables, and more standard fonts, such as X , for abstract random variables.
Using the same letter will usually indicate that the random variable X is a model of the arithmetic
quantity X.
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Define F(N) as the set of fundamental discriminants D with |D| ≤ N , and set

Xn,N : F(N)→ {−1, 0, 1},(1)

D 7→ χD(n).

Let {Xp}p prime be the sequence of independent random variables given by

(2) P
(
Xp = a

)
=

{
p

2(p+1)
if a = ±1,

1
p+1

if a = 0.

Furthermore, for any positive integer n, define Xn =
∏

p|nX
νp(n)
p , where νp(n) is the p-adic

valuation of n. The random variables Xn satisfy

(3) E
(
Xn

)
=

{∏
p|n

(
p
p+1

)
if n is a square

0 otherwise.

The sequenceX = {Xn}n∈N was first introduced in [8] for the purpose of studying the distribution
of the extreme values of L(1, χD) as D varies over all fundamental discriminants.

For an odd prime p, consider χD(p) for D ∈ Z/p2Z. Since D is a fundamental discriminant, we
know that the residue class corresponding to p2 is not contained in F(N). For the remaining p2−1
residue classes χD(p) = 0 for p− 1 of them (whenever D is a multiple of p). The values −1 and 1
on the other hand should occur equally often amongst the remaining p2 − p residue classes.

This suggests that the random model X should be a good model for the arithmetic sequence
{Xn,N}n∈N. In fact, one can prove that for all k ∈ N, we have

(4) lim
N→∞

EN
[
Xkn,N

]
= E

[
Xk
n

]
,

where EN
[
Xkn,N

]
=

1

F(N)

∑
D∈F(N)

Xk
n,N(D). This follows from Lemma 4.4 in Section 4 using the

complete multiplicativity of Xn and Xn,N .

Fix ε with 0 < ε < 1
2
. The objects of interest in this paper are the values L′

L
(1/2 + ε, χD) as D

varies over fundamental discriminants. Formally, we want to analyze the limiting distribution as
N →∞ of the arithmetic random variables

Lε,N : F(N)→ R,

D 7→ L′

L
(1/2 + ε, χD) .

For <(s) > 1, we have

(5)
L′

L

(
s, χD

)
=
∞∑
n=1

Λ(n)

ns
χD(n) =

∞∑
n=1

Λ(n)

ns
Xn,N(D).

In view of (4) and (5), we introduce the abstract R-valued random variable

(6) Lε =
∞∑
n=1

Λ(n)

n
1
2
+ε
Xn.
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Using the orthogonality relation (3) and applying the Menshov-Rademacher theorem [16, Theo-
rem B.10.5 ], we see that the random series on the right hand side of (6) is almost surely convergent,
and thus Lε is well-defined.

More generally, let τ > 1
2
, and let Uτ = {s ∈ C : <(s) > τ}. It follows from the Menshov-

Rademacher theorem that the random series

(7)
∞∑
n=1

Λ(n)

ns
Xn

is almost surely convergent on Uτ , and so it defines a holomorphic function there. We also consider
the random series

(8)
∑
p

(log p)Xp

ps −Xp

,

which, by Kolmogorov’s theorem [16, Theorem B.10.1], is almost surely convergent on Uτ , and
so it defines a holomorphic function there. One could easily verify that the series (7) and (8) are
equal for all s with <(s) > 1. By analytic continuation, we see that

(9)
∞∑
n=1

Λ(n)

ns
Xn =

∑
p

(log p)Xp

ps −Xp

almost surely in Uτ . In particular, we have

(10) Lε =
∞∑
n=1

Λ(n)

n
1
2
+ε
Xn =

∑
p

(log p)Xp

p
1
2
+ε −Xp

.

Consider the distribution functions

Fε,N(z) = PN
(
Lε,N ≤ z

)
:=

1

|F(N)|

∣∣∣∣{D ∈ F(N) :
L′

L
(1/2 + ε, χD) ≤ z

}∣∣∣∣ ,
and

Fε(z) = P
(
Lε ≤ z

)
,

for all z ∈ R. Recall that Lε,N is said to converge in distribution to Lε if

(11) lim
N→∞

Fε,N(z) = Fε(z),

for every continuity point z of Fε. Not only are we interested in establishing (11), but we are also
interested in determining how well the distribution of Lε approximates that of Lε,N . More precisely,
the main result of this paper is the following theorem.

Theorem 1.3. Fix 0 < ε < 1
2
. Then Fε,N converges in distribution to Fε which possesses a smooth

density function. The characteristic function of Fε has the form
(12)

ϕFε(τ) = E(exp(iτLε)) =
∏
p

(
1

p+ 1
+

p

2(p+ 1)

[
exp

(
−iτ log p

p
1
2
+ε − 1

)
+exp

(
iτ

log p

p
1
2
+ε + 1

)])
.

Furthermore, as N →∞, we have

‖Fε,N − Fε‖∞ �ε

(
log logN

logN

) 1
2
+ε

.
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Using this theorem, we derive the following asymptotic bound for the small values of
∣∣L′
L

(1/2 + ε, χD)
∣∣.

Corollary 1.4. Let mN = min
D∈F(N)

(∣∣∣∣L′L (1/2 + ε, χD)

∣∣∣∣). As N →∞, we have

mN �
(

log logN

logN

) 1
2
+ε

.

Proof. Let η = η(N) be a positive parameter which will be chosen so that η(N)→ 0 as N →∞.
Let

ΨN(η) =

∣∣∣∣{D ∈ F(N) :

∣∣∣∣L′L (1/2 + ε, χD)

∣∣∣∣ ≤ η

}∣∣∣∣ .
By Theorem 1.3, we have

ΨN(η)

|F(N)|
= P (Lε ∈ [−η, η]) +O

((
log logN

logN

) 1
2
+ε
)
.

Let fε(x) be the smooth density function associated with Fε. By [16, Proposition B.10.8] applied
to the random series

∑
p

(log p)Xp

p
1
2+ε−Xp

, we know that fε(0) > 0. It follows that

P (Lε ∈ [−η, η]) =

ˆ η

−η
fε(x) dx� η.

Choosing η = C
(

log logN
logN

) 1
2
+ε

for some large enough positive constant C yields

ΨN(η)

|F(N)|
�
(

log logN

logN

) 1
2
+ε

.

Hence, we get mN �
(

log logN
logN

) 1
2
+ε

as desired. �

The corollary above is an analogue of [20, Theorem 1.1] where the authors investigate the small
values of

∣∣L′
L

(1, χ)
∣∣ for non-principal Dirichlet characters χ modulo q, as q →∞ over the primes.

Organization. The structure of the paper is as follows. In Section 2, we prove Proposition 2.2
which provides a version of Berry-Esseen inequality based on the method of moments. In Section
3, we show how we use Proposition 2.2 to deduce Theorem 1.3 from two key results; namely,
Theorem 3.1 and Proposition 3.2. The former is a result relating the moments of the random model
Lε and the arithmetic model Lε,N . The latter is a decay bound on the moments of the random model
Lε. In Section 4, we collect some key lemmas, allowing for streamlined proofs of these two key
results. In Section 5, we prove Theorem 3.1. In Section 6, we prove Proposition 3.2.

Conventions and Notation.

• Given two functions f(x) and g(x), we shall interchangeably use the notation f(x) =
O(g(x)) and f(x)� g(x) to mean there exists M > 0 such that |f(x)| ≤ M |g(x)| for all
sufficiently large x. We write f(x) � g(x) to mean that the estimates f(x) � g(x) and
g(x)� f(x) hold simultaneously.
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• Throughout the paper ε denotes a fixed positive constant with 0 < ε < 1
2
.

• The letter p will always be used to denote a prime number.
• The capital letter F is used for distribution functions and the characteristic function of a

distribution function F is denoted by ϕF .
• We denote by F(N) the set of all fundamental discriminants D with |D| ≤ N .
• For a subset A(N) of F(N), we set PN(A(N)) = |A(N)|

|F(N)| .
• For an arithmetic random variable YN on F(N), we denote by EN(YN) the average

1

|F(N)|
∑

D∈F(N)

YN(D).

We also use the notation EN(1A(N)cYN) to denote the average 1
|F(N)|

∑
D∈F(N)\A(N) YN(D).

Acknowledgements. The authors would like to thank Amir Akbary and Edward Dobrowolski for
helpful comments and discussions related to this work.

2. BERRY-ESSEEN INEQUALITY

There are two main tools used to prove convergence in distribution. The first tool is Lévy’s continu-
ity theorem, which relates convergence in distribution of a given sequence of distribution functions
to point-wise convergence of the corresponding characteristic functions. The second tool is the
method of moments which instead relies on proving the convergence of all of the integral moments
of the random variables. Both of these methods are non-quantitative in their original forms. How-
ever, with some additional assumptions, we can reformulate both of these results in a quantitative
format. For instance, we have the following effective analogue of Lévy’s continuity theorem (see
[26, page 431]).

Proposition 2.1. Let {YN}∞N=1 and Y be real-valued random variables. Let FN and F denote the
corresponding distribution functions, and let ϕFN and ϕF denote the corresponding characteristic
functions. Suppose that F is absolutely continuous with bounded density. Then we have

(13) ‖FN − F‖∞ �
1

T (N)
+

ˆ T (N)

−T (N)

∣∣∣∣ϕFN (τ)− ϕF (τ)

τ

∣∣∣∣dτ,
for any T (N)→∞.

This type of result, which uses effective point-wise convergence of characteristic functions to attain
effective convergence in distribution, is sometimes referred to as a Berry-Esseen theorem (although
some authors reserve this term for the specific case in which the limiting distribution is normal). In
[21], the authors utilized this approach effectively in combination with Beurling-Selberg functions
to obtain an improved upper bound on the discrepancy between the distribution of ζ(s) on the line
<(s) = 1

2
+ ε and that of its random model (See [21, Theorem 1.1]).

The following proposition is a version of (13) based on the method of moments, and it provides
the main probabilistic tool which allows us to attain the discrepancy bound in Theorem 1.3

Proposition 2.2. Let {YN}∞N=1 and Y be real-valued random variables for which all moments exist
and satisfy

E
(
|YN |k

)1/k
, E
(
|Y |k

)1/k
= o(k), as k →∞.
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Let FN and F denote the distribution functions of YN and Y respectively and suppose that ϕF is
absolutely integrable. Let m(N, k) be some positive function such that uniformly for k ∈ Z+

|E(Y k
N)− E(Y k)|1/k � m(N, k), as N →∞.

Suppose that there exists some function M(N) → ∞ such that uniformly for k > logM(N), we
have

(14)
m(N, k)

k
� 1

M(N)
, as N →∞,

and uniformly for k ≤ logM(N), we have

(15) M(N)� log
1

m(N, k)k
, as N →∞.

Then {YN}N converges to Y in distribution, F has a smooth density function, and

‖FN − F‖∞ �
1

M(N)
.

Proof. By Proposition 2.1, for any T (N)→∞ we have

‖FN − F‖∞ �
1

T (N)
+

ˆ T (N)

−T (N)

∣∣∣∣ϕFN (τ)− ϕF (τ)

τ

∣∣∣∣dτ.
Recall that ϕFN (τ) = E(exp(iτYN)) and ϕF (τ) = E(exp(iτY )). We have

ˆ T (N)

−T (N)

∣∣∣∣ϕFN (τ)− ϕF (τ)

τ

∣∣∣∣dτ =

ˆ T (N)

−T (N)

∣∣∣∣ ∞∑
k=1

E(Y k
N)− E(Y k)

k!
(iτ)k−1

∣∣∣∣dτ
�
ˆ T (N)

−T (N)

∞∑
k=1

(C1m(N, k))k

k!
τ k−1dτ,

for some absolute positive constant C1 > 0. Interchanging summation and integration yields
ˆ T (N)

−T (N)

∣∣∣∣ϕFN (τ)− ϕF (τ)

τ

∣∣∣∣dτ � ∞∑
k=1

(C1m(N, k))k

k · k!
T (N)k.

Using Stirling’s formula,
√

2πkk+
1
2 e−k ≤ k! ≤ ekk+

1
2 e−k for all k ∈ N, we get

ˆ T (N)

−T (N)

∣∣∣∣ϕFN (τ)− ϕF (τ)

τ

∣∣∣∣dτ � ∞∑
k=1

1

k3/2

(
eC1m(N, k)

k
T (N)

)k
.

It follows that

‖FN − F‖∞ �
1

T (N)
+
∞∑
k=1

1

k3/2

(
eC1m(N, k)

k
T (N)

)k
� 1

T (N)
+

∑
k≤logM(N)

1

k3/2

(
eC1

m(N, k)

k
M(N)

)k
+

∑
k>logM(N)

(
eC1

m(N, k)

k
M(N)

)k
.(16)
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Choose T (N) = CM(N) for some positive constant C to be determined later. By (14), we have
that for sufficiently large n,

sup
k>logM(N)

m(N, k)

k
≤ C2

M(N)
,

for some absolute positive constant C2. Hence,

(17)
∑

k>logM(N)

(
eC1

m(N, k)

k
T (N)

)k
�

∑
k>logM(N)

(
eCC1C2

)k
� 1

M(N)
,

provided that C < 1
e2C1C2

. Notice that (15) implies that there exists C3 > 0 such that

sup
k≤logM(N)

m(N, k)k � e−C3M(N), as N →∞.

This and another application of Stirling’s formula implies
(18)∑
k≤logM(N)

1

k3/2

(
eC1

m(N, k)

k
T (N)

)k
� e−C3M(N)

∞∑
k=0

(CC1M(N))k

k!
� e(CC1−C3)M(N) � 1

M(N)
,

provided that CC1 < C3. Choosing 0 < C < min( 1
e2C1C2

, C3

C1
) and combining (16), (17) and (18)

yield the desired result. �

3. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 is accomplished in two parts. The first part consists of proving that
the large moments EN

(
1E(N)cL

k
ε,N

)
of Lε,N defined as the average of L′

L
(1/2 + ε, χD)k over D ∈

F(N) \ E(N) can be approximated by the corresponding moments E
(
Lkε
)

of the random model
Lε. Here E(N) is an exceptional set of fundamental discriminants such that |E(N)| = O (N1−c)
for some c > 0. More precisely, we prove the following theorem.

Theorem 3.1. There exists a set of fundamental discriminants E(N) ⊂ F(N) with PN
(
E(N)

)
=

O (N−c) for some c > 0, such that uniformly for k ∈ Z+, we have∣∣EN(1E(N)cL
k
ε,N

)
− E

(
Lkε
)∣∣1/k � logN

N
ε2(ε+3)

12k

.

Furthermore, this holds when E(N) is replaced by any E?(N) ⊃ E(N) as long as PN(E?(N)) �
PN(E(N)).

The second part of the proof of Theorem 1.3 consists of using the Berry-Essen inequality described
in Proposition 2.2 to relate the distribution functions Fε,N and Fε to the moments EN

(
1E(N)cL

k
ε,N

)
and E

(
Lkε
)
. This allows us to get an upper bound on the rate of convergence of Fε,N to Fε.

We require the following two propositions in order to verify that the conditions of Proposition 2.2
are satisfied.

Proposition 3.2. As k →∞, we have E
(
|Lε|k

)1/k � k
1
2
−ε.

Proposition 3.3 ( Lemma 4 of [22]). As |τ | → ∞, we have ϕFε(τ)� exp
(
−C|τ |

1
1
2+ε
)
, for some

positive constant C that depends only on ε.
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A proof of Proposition 3.3 can be found in [22]. The reader is referred to Section 5 and Section 6
for the proofs of Theorem 3.1 and Proposition 3.2 respectively.

Finally, we need the following result which is inspired by [21, Lemma 3.4] and follows from
Theorem 3.1 and Proposition 3.2.

Lemma 3.4. There exists a constant B = B(ε) > 0 such that

PN
[
|1E(N)cLε,N | ≥

(
logN

log logN

) 1
2
−ε]
� exp

(
−B logN

log logN

)
.

Proof. Markov’s inequality (see, for example, [1, Eq. 5.31]) gives

(19) PN
[
|1E(N)cLε,N | ≥

(
logN

log logN

) 1
2
−ε]
≤
(
EN
(
|1E(N)cLε,N |k

)1/k( log logN

logN

) 1
2
−ε)k

,

for any positive integer k. By Theorem 3.1 and Proposition 3.2, we have

(20) EN
(
1E(N)cL

k
ε,N

)1/k ≤ C
logN

N
ε2(ε+3)

12k

+ k
1
2
−ε,

for some positive constant C. Choosing k = logN
A log logN

with A > max(C
1

1
2−ε ,

1
2
+ε

ε2(ε+3)
12

) and combin-

ing (19) and (20) yield the desired result. �

Proof of Theorem 1.3. Let E?(N) = E(N) ∪ {D ∈ F(N) : |L′
L

(1/2 + ε, χD)| ≥
(

logN
log logN

) 1
2
−ε}.

By Lemma 3.4, we have PN(E?(N)) � PN(E(N)). Thus, we may apply Theorem 3.1 to obtain

(21)
∣∣EN( (1E?(N)cLε,N

)k )− E
(
Lkε
)∣∣1/k � logN

N δ/k
,

where δ = ε2(ε + 3)/12 > 0. On the other hand, by our definition of E?(N) and Proposition 3.2
we have

(22)
∣∣EN( (1E?(N)cLε,N

)k )− E
(
Lkε
)∣∣1/k � k

1
2
−ε +

( logN

log logN

) 1
2
−ε
.

Since the first term on the right hand side of (22) is dominant as long as k � logN
log logN

, we combine
(21) and (22) to get ∣∣EN( (1E?(N)cLε,N

)k )− E
(
Lkε
)∣∣1/k � m(N, k),

where

m(N, k) =


logN
Nδ/k if k ≤ δ

1
2
+ε

logN
log logN

,

k
1
2
−ε if k > δ

1
2
+ε

logN
log logN

.

Observe that

sup
k�log logN

m(N, k)

k
�
(

log logN

logN

) 1
2
+ε

,

and

inf
k�log logN

k log
1

m(N, k)
� inf

k�log logN
k log

N δ/k

logN
� logN.

9



It follows that conditions (14) and (15) are satisfied. Since the characteristic function of the random
model is absolutely integrable by Proposition 3.3, we can apply Proposition 2.2 to get

‖Fε,N ;? − Fε‖∞ �
(

log logN

logN

) 1
2
+ε

,

where Fε,N ;? is the distribution function corresponding to 1E?(N)cLε,N . Finally, combining this with
Lemma 3.4 implies

‖Fε,N − Fε‖∞ � exp

(
−B logN

log logN

)
+ ‖Fε,N ;? − Fε‖∞ �

(
log logN

logN

) 1
2
+ε

,

as desired. �

4. PRELIMINARY LEMMAS

Recall that if <(s) > 1, we have(
L′

L

(
s, χD

))k
= (−1)k

∞∑
n=1

Λk(n)

ns
χD(n),

where
Λk(n) =

∑
n1,n2,...,nk≥1
n1n2...nk=n

Λ(n1)Λ(n2) . . .Λ(nk),

and it satisfies

(23) Λk(n) ≤

(∑
m|n

Λ(m)

)k

= (log n)k.

For 0 < σ < 1, this upper bound along with an application of partial summation yields

(24)
∑
n≤λ

Λk(n)

nσ
� (log λ)kλ1−σ.

In what follows, we collect several basic lemmata that are required in the sequel.

Lemma 4.1 ( Corollary 5.3 of [23]). Consider the Dirichlet series α(s) =
∑∞

n=1
an
ns

with abscissa
of absolute convergent σa and abscissa of convergence σc. Fix some σ0 > σc. Choose c such that
c > max(0, σa − σ0). Let λ > 0 be non-integral. Then,∑

n≤λ

an
nσ0

=
1

2πi

ˆ c+iT

c−iT
α(σ0 + s)

λs

s
ds+ E

where

E �
∑

λ/2<n<2λ

|an|
nσ0

min

(
1,

λ

T |λ− n|

)
+

4c + λc

T

∞∑
n=1

|an|
nσ0+c

.

10



Lemma 4.2 (Lemma 2.2 of [19]). Suppose that L(s, χD) is nonzero for <(s) > σ0 and |=(s)| ≤
|t|+ 1. Then, for σ > σ0, we have

L′

L
(σ + it, χD)� log(|D|(|t|+ 2))

σ − σ0
.

Lemma 4.3 (Theorem 3 of [9]). Let N(υ, τ, χD) denote the number of zeros of L(s, χD) in the
rectangle R(υ, τ) = {s ∈ C : 1

2
+ υ < <(s) ≤ 1, |=(s)| ≤ τ}. Then for any δ > 0, we have∑

D∈F(N)

N(υ, τ, χD)�δ (Nτ)δN
3−6υ
3−2υ τ

4−4υ
3−2υ .

In view of this lemma, if we let E(υ, τ ;N) denote the set of D ∈ F(N) for which L′

L
(s, χD) has at

least one pole in R(υ, τ), then

(25) |E(υ, τ ;N)| �δ (Nτ)δN
3−6υ
3−2υ τ

4−4υ
3−2υ .

Finally, the following lemma serves a crucial role as a bridge from the arithmetic random setting
into the abstract probabilistic setting.

Lemma 4.4. For sufficiently large N , we have EN
(
Xn,N

)
− E

(
Xn

)
� N−

1
2n

1
4 log n.

Proof. By definition, we have

(26) EN
(
Xn,N

)
=

1

|F(N)|
∑

D∈F(N)

χD(n),

where

|F(N)| = 6

π2
N +O

(
N

1
2
+ε
)
.

In fact, if n = m2, then we have the following standard estimate (see for example [19, page 640])∑
D∈F(N)

χD(m2) =
∑

D∈F(N)
(D,m)=1

1 =
6

π2
N
∏
p|m

(
p

p+ 1

)
+O

(
N

1
2 τ(m)

)
,

where τ(m) is the divisor function. Combining this with (3) yields

EN
(
Xn,N

)
− E

(
Xn

)
� N−

1
2 τ(
√
n),

provided that n is a perfect square. By [8, lemma 4.1], we have∑
D∈F(N)

χD(n)� N
1
2n

1
4 log n,

for non-square n. This implies that EN
(
Xn,N

)
− E

(
Xn

)
� N−

1
2n

1
4 log n if n is not a perfect

square. �
11



5. PROOF OF THEOREM 3.1

The point of departure in proving Theorem 3.1 is approximating integral powers of L′

L
(1/2+ε, χD)

by short Dirichlet polynomials.

Let d and e be two positive constants such that d < e < ε. We set

Ed,e(N) = {D ∈ F(N) : L(s, χD) = 0 for some s ∈ Rd,e},
where

Rd,e = {s ∈ C :
1

2
+ (ε− e) < <(s) ≤ 1, |=(s)| ≤ λ

1
2
−(ε−d) + 1}.

For simplicity, we suppress the subscripts from our notation and set E(N) = Ed,e(N) andR = Rd,e.
It follows from (25) that for any δ > 0, we have

(27) PN
(
E(N)

)
� 1

N b
,

with

b =
4

3− 2(ε− e)

[
(ε− e)− (1− (ε− e))(1

2
− (ε− d))

(
log λ

logN

)]
− δ.

Proposition 5.1. Suppose λ satisfies log λ� logN . Then, for all D ∈ F(N)\E(N) and k ∈ Z+,
we have (

L′

L

(1

2
+ ε, χD

))k
= (−1)k

∑
n≤λ

Λk(n)

n
1
2
+ε
χD(n) +O

(
(C logN)k+1

λd

)
,

for some positive constant C.

Proof. Assume throughout that D ∈ F(N) \ E(N). Lemma 4.1 gives

(28)
1

2πi

ˆ c+iT

c−iT

(
− L′

L

(1

2
+ ε+ s, χD

))kλs
s
ds =

∑
n≤λ

Λk(n)χD(n)

n
1
2
+ε

+ Ψ1 + Ψ2,

where

Ψ1 �
∑

λ/2<n<2λ

Λk(n)

n
1
2
+ε

min

(
1,

λ

T |λ− n|

)
and Ψ2 �

4c + λc

T

∞∑
n=1

Λk(n)

n
1
2
+ε+c

.

We fix c = 1
2
− ε + 1/ log λ and assume without loss of generality that λ ∈ Z + 1

2
. Using (23) we

get

Ψ1 �
λ

1
2
−ε(log(2λ))k

T

∑
n≤2λ

1

|n− λ|
� λ

1
2
−ε(log(2λ))k+1

T

and

Ψ2 �
λ

1
2
−ε

T

( ∞∑
n=1

Λ(n)

n1+1/ log λ

)k
� λ

1
2
−ε

T
(log λ)k.

We now shift the line of integration in (28) from <(s) = c to <(s) = −d. Since D 6∈ E(N), the
integrand has only a simple pole at s = 0. By the residue theorem, we get(

− L′

L

(1

2
+ ε, χD

))k
=
∑
n≤λ

Λk(n)

n
1
2
+ε
χD(n) + Ψ1 + Ψ2 + Ψ3 + Ψ4,

12



where

Ψ3 + Ψ4 =

( ˆ −d+iT
c+iT

+

ˆ −d−iT
−d+iT

+

ˆ c−iT

−d−iT

)(
− L′

L

(1

2
+ ε+ s, χD

))kλs
s
ds.

Here, Ψ3 denotes the first and third integral, and Ψ4 denotes the second integral. Applying Lemma
4.2 gives

L′

L

(1

2
+ ε+ σ + it, χD

)
� log(|D|(|t|+ 2))

σ + e
≤ log(N(|t|+ 2))

σ + e
,

for |t| ≤ T . It follows that

Ψ3 �
ˆ c

−d

∣∣∣∣L′L (1

2
+ ε+ σ + iT, χD

)∣∣∣∣kλσT dσ � λc

T log λ

(
log(N(T + 2))

e− d

)k
.

Similarly,

Ψ4 �
ˆ T

−T

∣∣∣∣L′L (1

2
+ ε− d+ it, χD

)∣∣∣∣k∣∣∣∣ λ−d+it−d+ it

∣∣∣∣ dt� 1

λd

(
log(N(T + 2))

e− d

)k
log(1 + T/d).

If we set E = Ψ1 + Ψ2 + Ψ3 + Ψ4, then

E � λ
1
2
−ε(log(2λ))k+1

T
+
(

log(N(T + 2))
)k+1

[
λ

1
2
−ε

T log λ
+

1

λd

]
.

Choosing T = λ
1
2
−(ε−d) and assuming log λ� logN yields the desired result. �

Proof of Theorem 3.1. Choose λ such that log λ � logN . Using Proposition 5.1, (24) and (27)
gives

EN
(
1E(N)cL

k
ε,N

)
=
∑
n≤λ

Λk(n)

n
1
2
+ε

EN
(
Xn,N

)
+O

[
(C logN)k+1

λd
+
λ

1
2
−ε(log λ)k

N b

]
.

Note that this equation still holds if E(N) is replaced by some larger exceptional set E?(N) as long
as PN(E?(N)) � PN(E(N)). We apply Lemma 4.4 to obtain

EN
(
1E(N)cL

k
ε,N

)
= E

(∑
n≤λ

Λk(n)

n
1
2
+ε
Xn

)
+O

[
(C logN)k+1

(
1

λd
+
λ

1
2
−ε

N b
+
λ3/4−ε

N1/4

)]
.

The orthogonality property of Xn (see (3)) implies

E
(∑

n>λ

Λk(n)

n
1
2
+ε
Xn

)
� (2 log λ)k

λ1+2ε
,

which can clearly be neglected. Thus,

EN
(
1E(N)cL

k
ε,N

)
= E

(
Lkε
)

+O

(
(C logN)k+1

N t

)
,

where

t = min

[
d

log λ

logN
,min

(
b,

1

4

(
1− log λ

logN

))
− log λ

logN
(
1

2
− ε)

]
.
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Choosing δ sufficiently small, d = ε− (3−
√

9− 6ε)/2, e sufficiently close to d, and

log λ

logN
= min

(
6

7

4(ε− d)

(3− 2(ε− d))(1− 2(ε− d))
,

1

3− 4(ε− d)

)
,

gives t > ε2(ε+ 3)/12. �

6. PROOF OF PROPOSITION 3.2

Proof of Proposition 3.2. Using (10) and applying Minkowski’s inequality yield

(29) E
(
|Lε|k

)1/k ≤ E

[∣∣∣∣∑
p

log p

p
1
2
+ε
Xp

∣∣∣∣k
]1/k

+ E

[∣∣∣∣ ∑
pj , j≥2

log p
( Xp

p
1
2
+ε

)j∣∣∣∣k
]1/k

.

The second sum on the right hand side of (29) is

E

[∣∣∣∣∑
p

log p
X2
p

p1+2ε − p 1
2
+εXp

∣∣∣∣k
]1/k
�
∑
p

log p

p1+2ε
� 1.

We split the first sum on the right hand side of (29) at some y which we determine later to get

E
(
|Lε|k

)1/k � E

[∣∣∣∣∑
p≤y

log p

p
1
2
+ε
Xp

∣∣∣∣k
]1/k

+ E

[∣∣∣∣∑
p>y

log p

p
1
2
+ε
Xp

∣∣∣∣k
]1/k

+ 1

�
∑
p≤y

log p

p
1
2
+ε

+ E

[(∑
p>y

log p

p
1
2
+ε
Xp

)2k
]1/2k

+ 1,

by Minkowski’s inequality and the Cauchy-Schwartz inequality. Partial summation and the prime
number theorem give

∑
p≤y

log p

p
1
2+ε
� y

1
2
−ε. Observe that

E

[(∑
p>y

log p

p
1
2
+ε
Xp

)2k
]1/2k

= E

[ ∑
p1,...,pk>y
q1,...,qk>y

log p1 . . . log pk log q1 . . . log qk

(p1 . . . pkq1 . . . qk)
1
2
+ε

Xp1...pkXq1...qk

]1/2k

≤

[ ∑
p1,...pk>y

(log p1 . . . log pk)
2

(p1 . . . pk)1+2ε

∑
q1,...,qk>y

q1...qk=p1...pk

1

]1/2k
,(30)

where the last inequality follows from the orthogonality of Xn (see (3)). The innermost sum in
(30) counts the number of permutations on the set {1, . . . , k}, which is just k!. An application of
Stirling’s formula then yields

E

[(∑
p>y

log p

p
1
2
+ε
Xp

)2k
]1/2k

�
√
k

(∑
p>y

log p

p1+2ε

) 1
2

�
√
k

yε
.

Choosing y = k gives the desired result. �
14
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